Paper Reference(s)

6666/01 **Edexcel GCE** Core Mathematics C4 **Advanced Level**

Tuesday 22 January 2008 – Afternoon Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Green)

Items included with question papers

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C4), the paper reference (6666), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. There are 8 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

1.

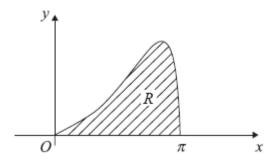


Figure 1

The curve shown in Figure 1 has equation $e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Copy and complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
у	0			8.87207	0
					(2)

(2

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region R. Give your answer to 4 decimal places.

(4)

2. (a) Use the binomial theorem to expand

$$(8-3x)^{\frac{1}{3}}, \qquad |x| < \frac{8}{3},$$

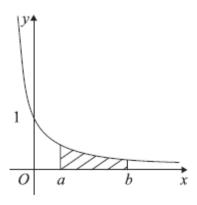
in ascending powers of x, up to and including the term in x^3 , giving each term as a simplified fraction.

(5)

(b) Use your expansion, with a suitable value of x, to obtain an approximation to $\sqrt[3]{(7.7)}$. Give your answer to 7 decimal places.

(2)

3.



The curve shown in Figure 2 has equation $y = \frac{1}{(2x+1)}$. The finite region bounded by the curve,

the x-axis and the lines x = a and x = b is shown shaded in Figure 2. This region is rotated through 360° about the x-axis to generate a solid of revolution.

Find the volume of the solid generated. Express your answer as a single simplified fraction, in terms of a and b.

(5)

4. (i) Find
$$\int \ln \left(\frac{x}{2}\right) dx$$
.

(4)

(ii) Find the exact value of
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x \, dx$$
.

(5)

5. A curve is described by the equation

$$x^3 - 4y^2 = 12xy.$$

(a) Find the coordinates of the two points on the curve where x = -8.

(3)

(b) Find the gradient of the curve at each of these points.

(6)

6. The points A and B have position vectors $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ respectively.

The line l_1 passes through the points A and B.

(a) Find the vector \overrightarrow{AB} .

(2)

(b) Find a vector equation for the line l_1 .

(2)

A second line l_2 passes through the origin and is parallel to the vector $\mathbf{i} + \mathbf{k}$. The line l_1 meets the line l_2 at the point C.

(c) Find the acute angle between l_1 and l_2 .

(3)

(d) Find the position vector of the point C.

(4)

7.

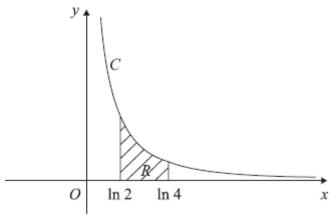


Figure 3

The curve *C* has parametric equations

$$x = \ln (t+2), \quad y = \frac{1}{(t+1)}, \quad t > -1.$$

The finite region R between the curve C and the x-axis, bounded by the lines with equations $x = \ln 2$ and $x = \ln 4$, is shown shaded in Figure 3.

(a) Show that the area of R is given by the integral

$$\int_0^2 \frac{1}{(t+1)(t+2)} \, \mathrm{d}t \, . \tag{4}$$

(b) Hence find an exact value for this area.

(6)

(c) Find a cartesian equation of the curve C, in the form y = f(x).

(4)

(d) State the domain of values for x for this curve.

(1)

- **8.** Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 cm³s⁻¹ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is 4000 cm².
 - (a) Show that at time t seconds, the height h cm of liquid in the cylinder satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h},$$

where k is a positive constant.

(3)

When h = 25, water is leaking out of the hole at 400 cm³s⁻¹.

(b) Show that k = 0.02.

(1)

(c) Separate the variables of the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - 0.02\sqrt{h}$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$\int_0^{100} \frac{50}{20 - \sqrt{h}} \, \mathrm{d}h \,. \tag{2}$$

Using the substitution $h = (20 - x)^2$, or otherwise,

(d) find the exact value of $\int_0^{100} \frac{50}{20 - \sqrt{h}} \, dh.$

(6)

(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm, giving your answer in minutes and seconds to the nearest second.

(1)

TOTAL FOR PAPER: 75 MARKS

END

January 2008 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b) Way 1	awrt 1.84432 awrt 4.81048 or 4.81047 0 can be implied Outside brackets awrt 0.39 or $\frac{1}{2} \times \text{awrt } 0.79$ $\frac{1}{2} \times \frac{\pi}{4} \text{ or } \frac{\pi}{8}$ For structure of trapezium rule $\{\dots,\dots\}$; Correct expression inside brackets which all must be multiplied by their "outside constant".	B1 B1 [2] B1 M1√
	$= \frac{\pi}{8} \times 31.05374 = 12.19477518 = \underline{12.1948} $ (4dp)	A1 cao [4]
Aliter (b)	Area $\approx \frac{\pi}{4} \times \left\{ \frac{0+1.84432}{2} + \frac{1.84432+4.81048}{2} + \frac{4.81048+8.87207}{2} + \frac{8.87207+0}{2} \right\}$ The sequivalent to: $\frac{\pi}{4}$ (or awrt 0.79) and a divisor of 2 on all terms inside brackets. One of first and last ordinates, two of the middle ordinates.	B1 <u>M1</u> √
Way 2	Area $\approx \frac{1}{2} \times \frac{\pi}{4}$; $\times \left\{ 0 + 2(1.84432 + 4.81048 + 8.87207) + 0 \right\}$ inside brackets ignoring the 2. Correct expression inside brackets if $\frac{1}{2}$ was to be factorised out.	<u>A1</u> √
	$= \frac{\pi}{4} \times 15.52687 = 12.19477518 = \underline{12.1948} $ (4dp)	A1 cao [4]
		6 marks

Note an expression like Area $\approx \frac{1}{2} \times \frac{\pi}{4} + 2(1.84432 + 4.81048 + 8.87207)$ would score B1M1A0A0

Question Number	Scheme		Marks
2. (a)	** represents a constant (which must be consistent for first accuracy mark) $(8-3x)^{\frac{1}{3}} = (8)^{\frac{1}{3}} \left(1 - \frac{3x}{8}\right)^{\frac{1}{3}} = 2\left(1 - \frac{3x}{8}\right)^{\frac{1}{3}}$	Takes 8 outside the bracket to give any of $(8)^{\frac{1}{3}}$ or 2 .	<u>B1</u>
	$= 2\left\{ \frac{1 + (\frac{1}{3})(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^3 + \dots \right\}$ with ** \neq 1	Expands $(1+**x)^{\frac{1}{3}}$ to give a simplified or an un-simplified $1+(\frac{1}{3})(**x)$; A correct simplified or an un-simplified $\{\}$ expansion with candidate's followed through $(**x)$	M1;
	$=2\left\{ \frac{1+\left(\frac{1}{3}\right)\left(-\frac{3x}{8}\right)+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(-\frac{3x}{8}\right)^{2}+\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(-\frac{3x}{8}\right)^{3}+\ldots \right\}$	Award SC M1 if you see $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(**x)^{2} + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(**x)^{3}$	
	$= 2\left\{1 - \frac{1}{8}x; -\frac{1}{64}x^2 - \frac{5}{1536}x^3 - \dots\right\}$ $= 2 - \frac{1}{4}x; -\frac{1}{32}x^2 - \frac{5}{768}x^3 - \dots$	Either $2\{1-\frac{1}{8}x\dots\}$ or anything that cancels to $2-\frac{1}{4}x$; Simplified $-\frac{1}{32}x^2-\frac{5}{768}x^3$	A1; A1 [5]
(b)	$(7.7)^{\frac{1}{3}} \approx 2 - \frac{1}{4}(0.1) - \frac{1}{32}(0.1)^2 - \frac{5}{768}(0.1)^3 - \dots$ = 2 - 0.025 - 0.0003125 - 0.0000065104166	Attempt to substitute $x = 0.1$ into a candidate's binomial expansion.	M1
	= 1.97468099	awrt 1.9746810	A1 [2]
			7 marks

You would award B1M1A0 for

$$=2\left\{\underbrace{1+(\frac{1}{3})(-\frac{3x}{8})+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(-\frac{3x}{8})^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(-3x)^3+\ldots}\right\}$$

because ** is not consistent.

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Be wary of calculator value of $(7.7)^{\frac{1}{3}} = 1.974680822...$

Question Number	Scheme		Marks
Aliter 2. (a) Way 2	$(8-3x)^{\frac{1}{3}}$		
way 2	$= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(**x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(**x)^{3} + \dots \end{cases}$ with $** \neq 1$	2 or $(8)^{\frac{1}{3}}$ (See note \downarrow) Expands $(8-3x)^{\frac{1}{3}}$ to give an un-simplified or simplified $(8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(**x);$ A correct un-simplified or simplified $\{$ $\}$ expansion with candidate's followed through $(**x)$	B1 M1; A1√
	$= \begin{cases} (8)^{\frac{1}{3}} + (\frac{1}{3})(8)^{-\frac{2}{3}}(-3x); + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(-3x)^{2} \\ + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{8}{3}}(-3x)^{3} + \dots \end{cases}$ $= \left\{ 2 + (\frac{1}{3})(\frac{1}{4})(-3x) + (-\frac{1}{9})(\frac{1}{32})(9x^{2}) + (\frac{5}{81})(\frac{1}{256})(-27x^{3}) + \dots \right\}$	Award SC M1 if you see $\frac{(\frac{1}{2})(-\frac{2}{3})}{2!}(8)^{-\frac{1}{3}}(**x)^{2} + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(8)^{-\frac{1}{3}}(**x)^{3}$	
	$=2-\frac{1}{4}x;-\frac{1}{32}x^2-\frac{5}{768}x^3-\dots$	Anything that cancels to $2-\frac{1}{4}x$; or $2\left\{1-\frac{1}{8}x\dots\right\}$ Simplified $-\frac{1}{32}x^2-\frac{5}{768}x^3$	A1; A1 [5]

Attempts using Maclaurin expansion should be escalated up to your team leader.

Be wary of calculator value of $(7.7)^{\frac{1}{3}} = 1.974680822...$

If you see the constant term "2" in a candidate's final binomial expansion, then you can award B1.

Question Number	Scheme	Mark	ks
3.	volume = π $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	of $V = \pi \int y^2 dx$. ed. Ignore limits.	
	$= \pi \int_a^b (2x+1)^{-2} dx$		
	$= (\pi) \left[\frac{(2x+1)^{-1}}{(-1)(2)} \right]_a^b$		
	$= (\pi) \left[\frac{-\frac{1}{2}(2x+1)^{-1}}{a} \right]_a^b$ Integrating to g	rive $\frac{\pm p(2x+1)^{-1}}{-\frac{1}{2}(2x+1)^{-1}}$ M1	
	$\equiv \mathbf{I} \pi \mathbf{I} \mathbf{I} \mathbf{I} = \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$	its of b and a and orrect way round.	
	$= \frac{\pi}{2} \left[\frac{-2a - 1 + 2b + 1}{(2a+1)(2b+1)} \right]$		
	$= \frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$		
	$=\frac{\pi(b-a)}{(2a+1)(2b+1)}$	$\frac{\pi(b-a)}{(2a+1)(2b+1)}$ A1 aef	[5]
		5 mai	

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or $\frac{-\pi (a-b)}{(2a+1)(2b+1)}$ or $\frac{\pi (b-a)}{4ab+2a+2b+1}$ or $\frac{\pi b - \pi a}{4ab+2a+2b+1}$.

Note that π is not required for the middle three marks of this question.

Question Number	Scheme		Marks
Aliter 3. Way 2	Volume = $\pi \int_a^b \left(\frac{1}{2x+1}\right)^2 dx = \pi \int_a^b \frac{1}{(2x+1)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \pi \int_a^b (2x+1)^{-2} dx$		
	Applying substitution $u = 2x + 1 \Rightarrow \frac{du}{dx} = 2$ and changing limits $x \rightarrow u$ so that $a \rightarrow 2a + 1$ and $b \rightarrow 2b + 1$, gives		
	$= (\pi) \int_{2a+1}^{2b+1} \frac{u^{-2}}{2} \mathrm{d}u$		
	$= \left(\pi\right) \left[\frac{u^{-1}}{(-1)(2)}\right]_{2a+1}^{2b+1}$		
	$= (\pi) \left[\frac{-\frac{1}{2}u^{-1}}{2a+1} \right]_{2a+1}^{2b+1}$	Integrating to give $\frac{\pm p u^{-1}}{-\frac{1}{2}u^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\left(\frac{-1}{2(2b+1)}\right) - \left(\frac{-1}{2(2a+1)}\right) \right]$	Substitutes limits of $2b+1$ and $2a+1$ and subtracts the correct way round.	dM1
	$= \frac{\pi}{2} \left[\frac{-2a - 1 + 2b + 1}{(2a+1)(2b+1)} \right]$		
	$= \frac{\pi}{2} \left[\frac{2(b-a)}{(2a+1)(2b+1)} \right]$		
	$= \frac{\pi(b-a)}{(2a+1)(2b+1)}$	$\frac{\pi(b-a)}{(2a+1)(2b+1)}$	A1 aef [5]
			5 marks

Note that π is not required for the middle three marks of this question.

Allow other equivalent forms such as

$$\frac{\pi b - \pi a}{(2a+1)(2b+1)}$$
 or $\frac{-\pi(a-b)}{(2a+1)(2b+1)}$ or $\frac{\pi(b-a)}{4ab+2a+2b+1}$ or $\frac{\pi b - \pi a}{4ab+2a+2b+1}$.

Question Number	Scheme		Marks
4. (i)	$\int \ln\left(\frac{x}{2}\right) dx = \int 1.\ln\left(\frac{x}{2}\right) dx \Rightarrow \begin{cases} u = \ln\left(\frac{x}{2}\right) & \Rightarrow & \frac{du}{dx} = \frac{1}{2} \\ \frac{dv}{dx} = 1 & \Rightarrow & v = x \end{cases}$	$\left. \frac{\frac{1}{2}}{\frac{x}{2}} = \frac{1}{x} \right\}$	
	$\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - \int x \cdot \frac{1}{x} dx$	Use of 'integration by parts' formula in the correct direction. Correct expression.	M1 A1
	$= x \ln\left(\frac{x}{2}\right) - \int \underline{1} \mathrm{d}x$	An attempt to multiply x by a candidate's $\frac{a}{x}$ or $\frac{1}{bx}$ or $\frac{1}{x}$.	<u>dM1</u>
	$=x\ln\left(\frac{x}{2}\right)-x+c$	Correct integration with $+ c$	A1 aef [4]
(ii)	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx$ $\left[\text{NB: } \frac{\cos 2x = \pm 1 \pm 2\sin^2 x}{2} \text{ or } \frac{\sin^2 x = \frac{1}{2} (\pm 1 \pm \cos 2x)}{2} \right]$ $= \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1 - \cos 2x}{2} \right) dx$	Consideration of double angle formula for $\cos 2x$	M1
	$=\frac{1}{2}\left[\begin{array}{c}x-\frac{1}{2}\sin 2x\end{array}\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$	Integrating to give	dM1 A1
	$= \frac{1}{2} \left[\left(\frac{\pi}{2} - \frac{\sin(\pi)}{2} \right) - \left(\frac{\pi}{4} - \frac{\sin\left(\frac{\pi}{2}\right)}{2} \right) \right]$ $= \frac{1}{2} \left[\left(\frac{\pi}{2} - 0 \right) - \left(\frac{\pi}{4} - \frac{1}{2} \right) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
	$= \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2} \right) = \frac{\pi}{8} + \frac{1}{4}$	$\frac{\frac{1}{2}\left(\frac{\pi}{4} + \frac{1}{2}\right)}{\text{Candidate must collect their}} \text{ or } \frac{\frac{\pi}{8} + \frac{2}{8}}{\frac{\pi}{8}}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso .	A1 aef, cso [5]

Note: $\int \ln\left(\frac{x}{2}\right) dx = (\text{their } v) \ln\left(\frac{x}{2}\right) - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) dx$ for M1 in part (i).

Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$

Question Number	Scheme	Marks
Aliter 4. (i) Way 2	$\int \ln\left(\frac{x}{2}\right) dx = \int (\ln x - \ln 2) dx = \int \ln x dx - \int \ln 2 dx$	
	$\int \ln x dx = \int 1 \cdot \ln x dx \Rightarrow \begin{cases} u = \ln x & \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = 1 & \Rightarrow v = x \end{cases}$	
	$\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx$ Use of 'integration by parts' formula in the correct direction.	M1
	$= x \ln x - x + c$ Correct integration of $\ln x$ with or without $+ c$	A1
	$\int \ln 2 dx = x \ln 2 + c$ Correct integration of $\ln 2$ with or without $+ c$	M1
	Hence, $\int \ln(\frac{x}{2}) dx = x \ln x - x - x \ln 2 + c$ Correct integration with $+ c$	A1 aef
		[4]

Note: $\int \ln x \, dx = (\text{their } v) \ln x - \int (\text{their } v) \cdot (\text{their } \frac{du}{dx}) \, dx$ for M1 in part (i).

Question Number	Scheme	Mark	cs
Aliter 4. (i) Way 3	$\int \ln\left(\frac{x}{2}\right) \mathrm{d}x$		
	$u = \frac{x}{2} \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}$		
	Applying substitution correctly to give $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u du$ $\int \ln\left(\frac{x}{2}\right) dx = 2 \int \ln u du$ Decide to award 2 nd M1 here!		
	$\int \ln u dx = \int 1.\ln u du$		
	$\int \ln u dx = u \ln u - \int u \cdot \frac{1}{u} du$ Use of 'integration by parts' formula in the correct direction.	M1	
	$= u \ln u - u + c$ Correct integration of $\ln u$ with or without $+ c$	A1	
	Decide to award 2 nd M1 here!	M1	
	$\int \ln\left(\frac{x}{2}\right) dx = 2(u \ln u - u) + c$		
	Hence, $\int \ln\left(\frac{x}{2}\right) dx = x \ln\left(\frac{x}{2}\right) - x + c$ Correct integration with $+ c$	A1 aef	[4]

Question Number	Scheme		Marks
Aliter	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin x . \sin x dx \text{and} I = \int \sin^2 x dx$		
	$\begin{cases} u = \sin x & \Rightarrow \frac{du}{dx} = \cos x \\ \frac{dv}{dx} = \sin x & \Rightarrow v = -\cos x \end{cases}$		
	$\therefore I = \left\{ -\sin x \cos x + \int \cos^2 x dx \right\}$	An attempt to use the correct by parts formula.	M1
	$\therefore I = \left\{ -\sin x \cos x + \int (1 - \sin^2 x) dx \right\}$		
	$\int \sin^2 x dx = \left\{ -\sin x \cos x + \int 1 dx - \int \sin^2 x dx \right\}$		
	$2\int \sin^2 x \mathrm{d}x = \left\{ -\sin x \cos x + \int 1 \mathrm{d}x \right\}$	For the LHS becoming 2 <i>I</i>	dM1
	$2\int \sin^2 x \mathrm{d}x = \left\{-\sin x \cos x + x\right\}$		
	$\int \sin^2 x dx = \left\{ \frac{-\frac{1}{2} \sin x \cos x + \frac{x}{2}}{2} \right\}$	Correct integration	A1
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin^2 x dx = \left[\left(-\frac{1}{2} \sin(\frac{\pi}{2}) \cos(\frac{\pi}{2}) + \frac{\frac{\pi}{2}}{2} \right) - \left(-\frac{1}{2} \sin(\frac{\pi}{4}) \cos(\frac{\pi}{4}) + \frac{\frac{\pi}{4}}{2} \right) \right]$ $= \left[(0 + \frac{\pi}{4}) - (-\frac{1}{4} + \frac{\pi}{8}) \right]$	Substitutes limits of $\frac{\pi}{2}$ and $\frac{\pi}{4}$ and subtracts the correct way round.	ddM1
	$= \frac{\pi}{8} + \frac{1}{4}$	$\frac{\frac{1}{2}\left(\frac{\pi}{4} + \frac{1}{2}\right)}{\text{Candidate must collect their}} \text{ or } \frac{\frac{\pi}{8} + \frac{1}{4}}{\text{s}} \text{ or } \frac{\frac{\pi}{8} + \frac{2}{8}}{\frac{2}{8}}$ Candidate must collect their π term and constant term together for A1 No fluked answers, hence cso .	A1 aef cso [5]

Note $\frac{\pi}{8} + \frac{1}{4} = 0.64269...$

Question Number	Scheme		Marks
5. (a)	$x^{3}-4y^{2} = 12xy (eqn *)$ $x = -8 \Rightarrow -512-4y^{2} = 12(-8)y$ $-512-4y^{2} = -96y$	Substitutes $x = -8$ (at least once) into * to obtain a three term quadratic in y. Condone the loss of = 0.	M1
	$4y^{2}-96y+512=0$ $y^{2}-24y+128=0$ $(y-16)(y-8)=0$	An attempt to solve the quadratic in y by	D.C.
	$y = \frac{24 \pm \sqrt{576 - 4(128)}}{2}$	either factorising or by the formula or by completing the square.	dM1
	y = 16 or $y = 8$.	Both $\underline{y=16}$ and $\underline{y=8}$. or $(-8, 8)$ and $(-8, 16)$.	A1 [3]
(b)	$\left\{ \frac{2x}{2x} \times \right\} 3x^2 - 8y \frac{dy}{dx} = \left(\frac{12y + 12x \frac{dy}{dx}}{12x + 12x \frac{dy}{dx}} \right)$	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $12x \frac{dy}{dx}$. Ignore $\frac{dy}{dx} =$ Correct LHS equation; Correct application of product rule	M1 A1; (B1)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.	
	$(-8, 8)$, $\frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-32}$	Substitutes $x = -8$ and at least one of their y-values to attempt to find any one of $\frac{dy}{dx}$.	dM1
	@ $(-8, 16)$, $\frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = \underline{0}$.	One gradient found. Both gradients of $\underline{-3}$ and $\underline{0}$ <i>correctly</i> found.	A1 A1 cso [6]
			9 marks

Question Number	Scheme		Marks
Aliter 5. (b) Way 2	$\left\{\frac{2x}{2x} \times\right\} 3x^2 \frac{dx}{dy} - 8y; = \left(12y \frac{dx}{dy} + 12x\right)$	Differentiates implicitly to include either $\pm kx^2 \frac{dx}{dy}$ or $12y \frac{dx}{dy}$. Ignore $\frac{dx}{dy} =$ Correct LHS equation Correct application of product rule	M1 A1; (B1)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2 - 12y}{12x + 8y} \right\}$	not necessarily required.	
	@ $(-8, 8)$, $\frac{dy}{dx} = \frac{3(64) - 12(8)}{12(-8) + 8(8)} = \frac{96}{-32} = \frac{-3}{-3}$, @ $(-8, 16)$, $\frac{dy}{dx} = \frac{3(64) - 12(16)}{12(-8) + 8(16)} = \frac{0}{32} = 0$.	Substitutes $x = -8$ and <i>at least one</i> of their y-values to attempt to find any one of $\frac{dy}{dx}$ or $\frac{dx}{dy}$. One gradient found. Both gradients of $\underline{-3}$ and $\underline{0}$ <i>correctly</i> found.	dM1 A1 A1 cso [6]

Question Number	Scheme	Marks
Aliter 5. (b) Way 3	$x^3 - 4y^2 = 12xy$ (eqn *)	
	$4y^2 + 12xy - x^3 = 0$	
	$y = \frac{-12x \pm \sqrt{144x^2 - 4(4)(-x^3)}}{8}$	
	$y = \frac{-12x \pm \sqrt{144x^2 + 16x^3}}{8}$	
	$y = \frac{-12x \pm 4\sqrt{9x^2 + x^3}}{8}$	
	$y = -\frac{3}{2}x \pm \frac{1}{2}(9x^2 + x^3)^{\frac{1}{2}}$	
	A credible attempt to make y the subject and an attempt to differentiate either $-\frac{3}{2}x$ or $\frac{1}{2}(9x^2+x^3)^{-\frac{1}{2}}$; $(18x+3x^2)$	M1
	$\frac{dy}{dx} = -\frac{3}{2} \pm \frac{18x + 3x^2}{4(9x^2 + x^3)^{\frac{1}{2}}} \qquad \qquad \frac{dy}{dx} = -\frac{3}{2} \pm k \left(9x^2 + x^3\right)^{-\frac{1}{2}} \left(g(x)\right)$	A1
	$\frac{dy}{dx} = -\frac{3}{2} \pm \frac{1}{2} \left(\frac{1}{2}\right) \left(9x^2 + x^3\right)^{-\frac{1}{2}}; \left(18x + 3x^2\right)$	A1
	@ $x = -8$ $\frac{dy}{dx} = -\frac{3}{2} \pm \frac{18(-8) + 3(64)}{4(9(64) + (-512))^{\frac{1}{2}}}$ Substitutes $x = -8$ find any one of $\frac{dy}{dx}$.	dM1
	$= -\frac{3}{2} \pm \frac{48}{4\sqrt{(64)}} = -\frac{3}{2} \pm \frac{48}{32}$	
	$\therefore \frac{dy}{dx} = -\frac{3}{2} \pm \frac{3}{2} = \underline{-3}, \underline{0}.$ One gradient correctly found. Both gradients of $\underline{-3}$ and $\underline{0}$ correctly found.	A1 A1 [6]

Question Number	Scheme		Marks
6. (a)	$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} & & \overrightarrow{OB} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$		
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$	Finding the difference between \overrightarrow{OB} and \overrightarrow{OA} . Correct answer.	M1 ± A1
(b)	$l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ $l_{1}: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$	An expression of the form $(\text{vector}) \pm \lambda(\text{vector})$ $\mathbf{r} = \overline{OA} \pm \lambda(\text{their } \overline{AB}) \text{ or }$ $\mathbf{r} = \overline{OB} \pm \lambda(\text{their } \overline{AB}) \text{ or }$ $\mathbf{r} = \overline{OA} \pm \lambda(\text{their } \overline{BA}) \text{ or }$ $\mathbf{r} = \overline{OB} \pm \lambda(\text{their } \overline{BA})$ $(\mathbf{r} \text{ is needed.})$	[2] M1 A1 √ aef
(c)	$l_2: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \mathbf{r} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$		[2]
	$\overrightarrow{AB} = \mathbf{d}_1 = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, $\mathbf{d}_2 = \mathbf{i} + 0\mathbf{j} + \mathbf{k}$ & θ is angle		
	$\cos \theta = \frac{\overline{AB} \cdot \mathbf{d}_2}{\left(\left \overline{AB}\right \cdot \left \mathbf{d}_2\right \right)} = \frac{\begin{pmatrix} 1\\-2\\2 \end{pmatrix} \cdot \begin{pmatrix} 1\\0\\1 \end{pmatrix}}{\left(\sqrt{(1)^2 + (-2)^2 + (2)^2} \cdot \sqrt{(1)^2 + (0)^2 + (1)^2}\right)}$	Considers dot product between \mathbf{d}_2 and their \overline{AB} .	M1√
	$\cos \theta = \frac{1+0+2}{\sqrt{(1)^2+(-2)^2+(2)^2} \cdot \sqrt{(1)^2+(0)^2+(1)^2}}$	Correct followed through expression or equation .	A1 √
	$\cos \theta = \frac{3}{3.\sqrt{2}} \Rightarrow \frac{\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79.$	$\theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ or awrt } 0.79$	A1 cao [3]

This means that $\cos \theta$ does not necessarily have to be the subject of the equation. It could be of the form $3\sqrt{2}\cos\theta = 3$.

6. (d) If l_i and l_2 intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ i: $2 + \lambda = \mu$ (1) j: $6 - 2\lambda = 0$ (2) k: $-1 + 2\lambda = \mu$ (3) (2) yields $\lambda = 3$ Any two yields $\lambda = 3$, $\mu = 5$ Aliter 6. (d) Way 2 Aliter 6. (d) Way 2 If l_i and l_2 intersect then: $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct. Aliter 6. (d) Way 2 Either seeing equation (2) written down correctly with or without any other equation or seeing equations (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (2) or simultaneously solve any two of the three equation or or seeing equations (2) or simultaneously solve any two of the three equation or or μ correct. Attempt to solve either equation (2) or simultaneously solve any two of the three equation (2) or simultaneously solve any two of the three equation (2) or simultaneously solve any two of the three equation (2) or simultaneously solve any	arks
j: $6-2\lambda=0$ (2) down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct. At l : $\mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + 3 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ or $\mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier. Alter 6. (d) Way 2 If l_1 and l_2 intersect then: $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ i: $3 + \lambda = \mu$ (1) j: $4 - 2\lambda = 0$ (2) k: $1 + 2\lambda = \mu$ (3) Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	
(2) yields $\lambda = 3$ any two yields $\lambda = 3$, $\mu = 5$ or simultaneously solve any two of the three equations to find either one of λ or μ correct. All therefore, (a) Way 2 Aliter 6 , (d) Way 2 If l_1 and l_2 intersect then: $ \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} $ Either seeing equation (2) written down correctly with or without any other equation \mathbf{r} is \mathbf{r} and \mathbf{r} and \mathbf{r} is \mathbf{r} and r	_
Aliter 6. (d) Way 2 If l_1 and l_2 intersect then: $\begin{pmatrix} 3\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-2\\2 \end{pmatrix} = \mu \begin{pmatrix} 1\\0\\1 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier. Fully correct solution & no incorrect values of λ or μ seen earlier. Aliter 6. (d) Way 2 $i: 3 + \lambda = \mu \qquad (1)$ $j: 4 - 2\lambda = 0 \qquad (2)$ $k: 1 + 2\lambda = \mu \qquad (3)$ Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	
i: $3 + \lambda = \mu$ (1) j: $4 - 2\lambda = 0$ (2) k: $1 + 2\lambda = \mu$ (3) Either seeing equation (2) written down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. (2) yields $\lambda = 2$ Any two yields $\lambda = 2$, $\mu = 5$ Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	so [4]
j: $4-2\lambda=0$ (2) down correctly with or without any other equation or seeing equations (1) and (3) written down correctly. (2) yields $\lambda=2$ Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find	
Any two yields $\lambda = 2$, $\mu = 5$ or simultaneously solve any two of the three equations to find	1
$l_{1} : \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	so [4]
11,	141 narks

Note: Be careful! λ and μ are not defined in the question, so a candidate could interchange these or use different scalar parameters.

Question Number	Scheme	Marks
Aliter 6. (d) Way 3	If l_1 and l_2 intersect then: $\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	
	i: $2 - \lambda = \mu$ (1)Either seeing equation (2) written down correctly with or without any other equation or seeing equationsj: $6 + 2\lambda = 0$ (2)other equation or seeing equationsk: $-1 - 2\lambda = \mu$ (3)(1) and (3) written down correctly.	M1√
	Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find Any two yields $\lambda = -3$, $\mu = 5$	dM1
	either one of λ or μ correct. $l_1: \mathbf{r} = \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	A1 cso [4]
Aliter 6. (d) Way 4	If l_1 and l_2 intersect then: $ \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} $	
	i: $3 - \lambda = \mu$ (1)Either seeing equation (2) writtenj: $4 + 2\lambda = 0$ (2)down correctly with or without any other equation or seeing equationsk: $1 - 2\lambda = \mu$ (3)(1) and (3) written down correctly.	M1√
	(2) yields $\lambda = -2$ Attempt to solve either equation (2) or simultaneously solve any two of the three equations to find either one of λ or μ correct.	dM1 A1
	$l_1: \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix} \text{ or } \mathbf{r} = 5 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 5 \end{pmatrix}$ Fully correct solution & no incorrect values of λ or μ seen earlier.	
		[4] 11 marks

Question Number			Scheme	Marks
	Helpful tal	ole!		
6. (b)				
	i	j	k	
	-6	22	-17	
	-5	20	-15	
	-4	18	-13	
	-3	16	-11	
	-2	14	-9	
	-1	12	-7	
	0	10	-5	
	1	8	-3	
	2	6	-1	
	3	4	1	
	4	2	3	
	5	0	5	
	6	-2	7	
	7	-4	9	
	8	-6	11	
	9	-8	13	
	10	-10	15	
	11	-12	17	
	12	-14	19	
	13	-16	21	
	14	-18	23	
	15	-20	25	
	16	-22	27	
	17	-24	29	
	18	-26	31	
	19	-28	33	

Question Number	Scheme		Marks
7. (a)	$\left[x = \ln(t+2), y = \frac{1}{t+1}\right], \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t+2}$	Must state $\frac{dx}{dt} = \frac{1}{t+2}$	B1
	Area(R) = $\int_{\ln 2}^{\ln 4} \frac{1}{t+1} dx$; = $\int_{0}^{2} \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$	Area = $\int \frac{1}{t+1} dx.$ Ignore limits. $\int \left(\frac{1}{t+1}\right) \times \left(\frac{1}{t+2}\right) dt.$ Ignore limits.	M1;
	Changing limits, when: $x = \ln 2 \implies \ln 2 = \ln(t+2) \implies 2 = t+2 \implies t = 0$ $x = \ln 4 \implies \ln 4 = \ln(t+2) \implies 4 = t+2 \implies t = 2$	changes limits $x \rightarrow t$ so that $\ln 2 \rightarrow 0$ and $\ln 4 \rightarrow 2$	B1
	Hence, Area(R) = $\int_0^2 \frac{1}{(t+1)(t+2)} dt$		[4]
(b)	$\left(\frac{1}{(t+1)(t+2)}\right) = \frac{A}{(t+1)} + \frac{B}{(t+2)}$	$\frac{A}{(t+1)} + \frac{B}{(t+2)}$ with A and B found	M1
	1 = A(t+2) + B(t+1)		
	Let $t = -1$, $1 = A(1)$ $\Rightarrow \underline{A = 1}$ Let $t = -2$, $1 = B(-1)$ $\Rightarrow B = -1$	Finds both <i>A</i> and <i>B</i> correctly. Can be implied. (See note below)	A1
	$\int_0^2 \frac{1}{(t+1)(t+2)} dt = \int_0^2 \frac{1}{(t+1)} - \frac{1}{(t+2)} dt$		
	$= \left[\ln(t+1) - \ln(t+2)\right]_0^2$	Either $\pm a \ln(t+1)$ or $\pm b \ln(t+2)$ Both ln terms correctly ft.	dM1 A1√
	$= (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	Substitutes <i>both</i> limits of 2 and 0 and subtracts the correct way round.	ddM1
	$= \ln 3 - \ln 4 + \ln 2 = \ln 3 - \ln 2 = \ln \left(\frac{3}{2}\right)$	$\frac{\ln 3 - \ln 4 + \ln 2 \text{ or } \ln\left(\frac{3}{4}\right) - \ln\left(\frac{1}{2}\right)}{\text{or } \ln 3 - \ln 2 \text{ or } \ln\left(\frac{3}{2}\right)}$ (must deal with ln 1)	A1 aef isw
		1	

Takes out brackets.

Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} + \frac{1}{(t+2)}$ means first M1A0 in (b).

Writing down $\frac{1}{(t+1)(t+2)} = \frac{1}{(t+1)} - \frac{1}{(t+2)}$ means first M1A1 in (b).

Question Number	Scheme		Marks
	$x = \ln(t+2), \qquad y = \frac{1}{t+1}$		
7. (c)	$e^x = t + 2 \implies t = e^x - 2$	Attempt to make $t =$ the subject giving $t = e^x - 2$	M1 A1
	$y = \frac{1}{e^x - 2 + 1} \implies y = \frac{1}{e^x - 1}$	Eliminates <i>t</i> by substituting in <i>y</i> giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter	$t+1=\frac{1}{y} \implies t=\frac{1}{y}-1 \text{ or } t=\frac{1-y}{y}$	Attempt to make $t =$ the subject	M1
7. (c) Way 2	$y(t+1) = 1 \implies yt + y = 1 \implies yt = 1 - y \implies t = \frac{1-y}{y}$	Giving either $t = \frac{1}{y} - 1$ or $t = \frac{1 - y}{y}$	A1
	$x = \ln\left(\frac{1}{y} - 1 + 2\right)$ or $x = \ln\left(\frac{1 - y}{y} + 2\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1$		
	$e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	
(d)	Domain: $\underline{x > 0}$	$\underline{x > 0}$ or just > 0	[4] B1 [1]
			15 marks

Question Number	Scheme		Marks
Aliter 7. (c) Way 3	$e^x = t + 2 \implies t + 1 = e^x - 1$	Attempt to make $t+1 =$ the subject giving $t+1 = e^x -1$	M1 A1
	$y = \frac{1}{t+1} \implies y = \frac{1}{e^x - 1}$	Eliminates t by substituting in y giving $y = \frac{1}{e^x - 1}$	dM1 A1 [4]
Aliter 7. (c) Way 4	$t+1=\frac{1}{y} \implies t+2=\frac{1}{y}+1 \text{ or } t+2=\frac{1+y}{y}$	Attempt to make $t + 2 =$ the subject Either $t + 2 = \frac{1}{y} + 1$ or $t + 2 = \frac{1+y}{y}$	M1 A1
	$x = \ln\left(\frac{1}{y} + 1\right)$ or $x = \ln\left(\frac{1+y}{y}\right)$	Eliminates t by substituting in x	dM1
	$x = \ln\left(\frac{1}{y} + 1\right)$		
	$e^x = \frac{1}{y} + 1 \implies e^x - 1 = \frac{1}{y}$		
	$y = \frac{1}{e^x - 1}$	giving $y = \frac{1}{e^x - 1}$	A1 [4]

Question Number	Scheme		Marks
8. (a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - c\sqrt{h} \text{or} \frac{\mathrm{d}V}{\mathrm{d}t} = 1600 - k\sqrt{h} ,$	Either of these statements	M1
	$\left(V = 4000h \implies\right) \frac{\mathrm{d}V}{\mathrm{d}h} = 4000$	$\frac{dV}{dh} = 4000 \text{ or } \frac{dh}{dV} = \frac{1}{4000}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\frac{\mathrm{d}V}{\mathrm{d}t}}{\frac{\mathrm{d}V}{\mathrm{d}h}}$		
	Either, $\frac{dh}{dt} = \frac{1600 - c\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{c\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	Convincing proof of $\frac{dh}{dt}$	A1 AC
	or $\frac{dh}{dt} = \frac{1600 - k\sqrt{h}}{4000} = \frac{1600}{4000} - \frac{k\sqrt{h}}{4000} = 0.4 - k\sqrt{h}$	$\frac{1}{dt}$	
(b)	When $h = 25$ water <i>leaks out such that</i> $\frac{dV}{dt} = 400$		[3]
	$400 = c\sqrt{h} \Rightarrow 400 = c\sqrt{25} \Rightarrow 400 = c(5) \Rightarrow c = 80$		
	From above; $k = \frac{c}{4000} = \frac{80}{4000} = 0.02$ as required	Proof that $k = 0.02$	B1 AG [1]
Aliter (b) Way 2	$400 = 4000k\sqrt{h}$		[1]
way 2	$\Rightarrow 400 = 4000k\sqrt{25}$	Using 400, 4000 and $h = 25$	
	$\Rightarrow 400 = k(20000) \Rightarrow k = \frac{400}{20000} = 0.02$	or $\sqrt{h} = 5$. Proof that $k = 0.02$	B1 AG [1]
(c)	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 - k\sqrt{h} \implies \int \frac{\mathrm{d}h}{0.4 - k\sqrt{h}} = \int dt$	Separates the variables with $\int \frac{dh}{0.4 - k\sqrt{h}}$ and $\int dt$ on either side with integral signs not necessary.	M1 oe
	$\therefore \text{ time required} = \int_0^{100} \frac{1}{0.4 - 0.02 \sqrt{h}} dh \frac{\div 0.02}{\div 0.02}$	<i>5</i>	
	time required = $\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h$	Correct proof	A1 AG
			[2]

Question Number	Scheme		Marks
8. (d)	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h \text{with substitution} h = (20 - x)^2$		
	$\frac{dh}{dx} = 2(20-x)(-1)$ or $\frac{dh}{dx} = -2(20-x)$	Correct $\frac{dh}{dx}$	B1 aef
	$h = (20 - x)^2 \Rightarrow \sqrt{h} = 20 - x \Rightarrow x = 20 - \sqrt{h}$		
	$\int \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \int \frac{50}{x} \cdot -2(20 - x) \mathrm{d}x$	$\pm \lambda \int \frac{20 - x}{x} dx \text{ or}$ $\pm \lambda \int \frac{20 - x}{20 - (20 - x)} dx$	M1
	$=100\int \frac{x-20}{x} \mathrm{d}x$	where λ is a constant	
	$=100\int \left(1-\frac{20}{x}\right) \mathrm{d}x$		
	$=100(x-20\ln x) \ (+c)$	$\pm \alpha x \pm \beta \ln x; \alpha, \beta \neq 0$ $100x - 2000 \ln x$	M1 A1
	change limits: when $h=0$ then $x=20$ and when $h=100$ then $x=10$		
	$\int_0^{100} \frac{50}{20 - \sqrt{h}} \mathrm{d}h = \left[100 x - 2000 \ln x \right]_{20}^{10}$		
	or $\int_0^{100} \frac{50}{20 - \sqrt{h}} dh = \left[100 \left(20 - \sqrt{h} \right) - 2000 \ln \left(20 - \sqrt{h} \right) \right]_0^{100}$	Correct use of limits, ie. putting them in the correct way round	
	$= (1000 - 2000 \ln 10) - (2000 - 2000 \ln 20)$	Either $x = 10$ and $x = 20$ or $h = 100$ and $h = 0$	ddM1
	$= 2000 \ln 20 - 2000 \ln 10 - 1000$	Combining logs to give	
	$= 2000 \ln 2 - 1000$	$ 2000 \ln 2 - 1000 \text{or } -2000 \ln \left(\frac{1}{2}\right) - 1000 $	A1 aef [6]
(e)	Time required = $2000 \ln 2 - 1000 = 386.2943611$ sec		
	= 386 seconds (nearest second)		
	= 6 minutes and 26 seconds (nearest second)	6 minutes, 26 seconds	B1 [1]
			13 marks